广 西 壮 族 自 治 区 地 方 标 准

国家机关公共建筑用能管理规范

Management specification of energy for organ office buildings

前 言

本文件按照GB／T 1．1—2020《标准化工作导则 第1部分：标准化文件的结构和起草规则》的规定起草。

本文件由广西壮族自治区机关事务管理局提出并归口。
本文件起草单位：广西壮族自治区机关事务管理局，华南理工大学，广西壮族自治区标准技术研究院，广州远正智能科技股份有限公司。

本文件主要起草人：梁万山，刘玲燕，黄译萩，陈中悦，杨远福，陈城，何敏，梁艳辉，林建业，彭茂锋，罗超雁，曾思，曾锻成，熊陈武，黄琨，冯斐，韦建华，唐艳琼。

引 言

为贯彻落实《中华人民共和国节约能源法》，《公共机构节能条例》以及其他有关建筑用能管理的法律法规和方针政策，规范国家机关公共建筑用能管理，提高国家机关公共建筑能源利用效率，提升国家机关公共建筑用能管理水平，充分发挥国家机关公共建筑在公共机构乃至全社会高效能源管理工作的示范带动作用，成为公共机构高效节能管理工作的探索者与先行者，推动广西壮族自治区节能工作的发展，结合广西壮族自治区气候类型与气候特点，以及建筑物用能系统运行情况，特制定文件。

本文件根据广西壮族自治区公共机构节能工作开展的需要，经调查研究与资料分析，参考有关国家标准，行业标准和其它省（市）地方标准，在广泛征求意见的基础上制定。

本文件旨在对国家机关公共建筑的空调通风系统，照明与插座系统，动力系统，生活热水供应系统，供配电系统，可再生能源系统以及其他特殊用电系统等的实际运行管理进行指导。

国家机关公共建筑的用能管理，除应符合本文件外，尚应符合国家，地方及行业现行有关标准的规定。

国家机关公共建筑用能管理规范

1 范围

本文件给出了国家机关公共建筑在能源绩效设定，日常运行管理方面的内容，规定了用能评估与审计及用能系统能效调适方面的要求。

本文件适用于广西行政区域内国家机关公共建筑在运行期间的用能管理。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中，注日期的引用文件，仅该日期对应的版本适用于本文件；不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB／T 17166 能源审计技术通则
GB／T 29149 公共机构能源计量器具配备和管理要求
GB／T 32019 公共机构能源管理体系实施指南
GB／T 36713 能源管理体系 能源基准和能源绩效参数
GB 50174 数据中心设计规范
GB 50189 公共建筑节能设计标准
JGJ／T 177 公共建筑节能检测标准

3 术语和定义

下列术语和定义适用于本文件。
3.1

国家机关公共建筑 state organ public buildings
全部或部分使用财政资金的国家机关，事业单位和团体组织等机构使用的公共建筑。

3． 2

公共建筑用能管理 energy management for public buildings
将建筑物或建筑群内的变配电，照明，电梯，空调，通风，热水，给排水，信息机房等能源使用状况实行集中监测，管理和控制，从而实现建筑能效提升的制度与技术管理活动。
3． 3
能耗指标 energy consumption index
由能耗目标产生，为实现能耗目标所需规定的具体，可量化的绩效要求。
3． 4
能流 energy flow
能源流动的过程，描述能源消费结构，反映购入贮存，加工转换，输送分配，最终使用等方面的数量平衡关系。
3.5

用能评估 energy consumption assessment
通过实测的能源消耗数据，对建筑物运行过程的用能水平与合理性进行评估。

3.6

公共建筑能源审计 public building energy audit

通过对公共建筑进行文件审查和调研测试，对用能单位能源利用状况进行定量分析，对建筑能源利用效率，消耗水平，经济效益和环境效果进行监测，诊断和评价，从而发现建筑节能潜力，提出节能运行调适和改造建议。

3.7

系统调适 system adjustment

通过在建筑用能设备与系统运行过程的监控和管理，保证系统按照设计和用户的需求实现安全高效的运行和控制的活动。

4 基本规定

4.1 建筑用能管理是针对建筑中使用电力，天然气，煤，汽油，柴油，液化石油气等各种能源，包括外购或输入到建筑的能源和经能量系统转换并产生的二次能源，以及终端使用者消耗的能源的管理。
4.2 建筑用能管理技术工作中涉及到的相关系统或设备的测试与评估应根据国家，行业或地方相关检测要求执行。

5 能源绩效设定

5． 1 一般规定

5．1．1 建筑能源绩效设定包括能源绩效参数和能源绩效指标的设定。
5．1．2 建筑能源绩效指标是建筑用能日常运行管理的考核依据，建筑用能评估与审计的重要评价指标，是建筑用能系统持续调适和能效提升的参考依据。
5．1．3 通过建立并使用能源绩效参数与指标，日常监测并量化建筑或用能设备，系统能源绩效变化，从而对其能源绩效进行有效管理。

5.2 能源绩效参数设定

5．2． 1 能源绩效参数设定前应确定建筑能耗目标，界定能源绩效参数测量边界，确定和计算能流，判断影响能源变化因素的重要程度。
5．2．2 应考虑数据获取的可行性，对无法获取的数据，应判断是否需要增加新仪表，分表，传感器来计量统计。
5．2．3 当能源绩效参数无法测量时，应重新评估并修改能源绩效参数。
5．2． 4 能源绩效参数的数据宜定期收集，数据收集频率宜高于建筑用能日常评估报告的频率，数据收集时间间隔不宜超过 6 个月。
5． 2.5 能源绩效参数应全面，系统，准确地反映建筑能源绩效情况。
5．2．6 可建立多层次的能源绩效参数以满足不同层级使用者对能源管理目标的不同需求。
5．2．7 建筑能源绩效参数应符合 GB／T 36713 的规定，参数类型应根据建筑能耗目标，建筑功能以及业主需求的复杂程度确定。国家机关公共建筑不同能源绩效参数的类型和应用见表1。

表1 国家机关公共建筑能源绩效参数的类型和应用

能源绩效参数类型	用途	示例
直接测量的数值	－适用于可直接测量得到能源消耗量和变化量的系统； - 可用于评估节能量是否符合法规要求； - 可用于监管和控制能源存储和消耗； - 可用于分析能源消耗趋势。	- 建筑总能耗（kgce） - 照明能耗（ $k W \cdot h$ ） - 耗电量峰值（ $\mathrm{kW} \cdot \mathrm{h}$ ） - 项目节能量（kgce）
测量值的比率	- 可用于监测只有一个相关变量的系统能效； - 适用于对标； - 可用于分析能效趋势。	－单位建筑面积能耗 $\left(\mathrm{kgce} / \mathrm{m}^{2}\right)$ 人均综合能耗（kgce／人） 单位建筑面积电耗（ $\mathrm{kW} \cdot \mathrm{h} / \mathrm{m}^{2}$ ） 人均电耗（ $\mathrm{kW} \cdot \mathrm{h} /$ 人） 公务用车百公里油耗（ $\mathrm{L} / 100 \mathrm{~km}$ ） 数据中心机房电能使用效率 PUE
统计模型	- 适用于具有多个相关变量的系统； - 适用于对标； - 适用于能源绩效与相关变量的关系能够被量化的复杂系统，对其建立模型； －适用于具有多个相关变量的能源绩效的评估。	锅炉效率（\％） 冷却塔效率（\％） 空调系统运行能效 COP
工程模型	可用于具有瞬态过程或动态反馈循环的系统；可用于评估相关变量有关联性的系统能源绩效；可用于设计阶段对能源绩效的评估。	冷水机组的耗电量模型，可建立冷却负荷，室外温度和室内温度的关系； 建筑能耗模型，可建立运行时间，空调系统类型以及用户需求的关系。
5.3 能源绩效指标设定		

5．3．1 能源绩效指标宜结合上级主管部门下发的能耗目标，建筑现有用能情况以及国家与地方能耗定额标准等合理确定。
5．3．2 能源绩效指标设定范围应满足但不限于上级主管部门下发能耗目标的要求，并符合建筑用能舒适性需求。
5．3．3 用能机构应定期统计核定能源绩效指标值，并与设定的能源绩效指标进行比较，如现有能源绩效指标值未达到能源绩效指标设定值的要求，应采取改进措施。
5．3． 4 能源绩效指标应设置完成期限，用能机构根据管理的要求，能源绩效执行期满后应按当前建筑用能需求重新修改能源绩效指标或能源绩效参数。

6 日常运行管理

6． 1 应依据建筑能源绩效指标值进行控制，如能源绩效实际值未达到能源绩效指标值，应进行建筑用能评估与审计，开展用能系统性能测试工作，进行节能诊断。
6． 2 应建立节能目标考核制度，根据能源绩效指标的规定，提出考核指标，并将考核指标分解落实。
6． 3 应按照 GB／T 29149 的要求配备计量器具，完善公共建筑能源分类，分项，分户及主要用能设备的计量。
6． 4 应执行国家能源资源消费统计制度，统计分析并归档能源资源消费和利用状况。

DB45／T 2361—2021
6． 5 应按月度记录与统计能源消费数据等，并建立能源档案，定期对岗位人员开展节能管理能力和技能的培训。
6． 6 对于用能设备及系统，应建立日常抄表，巡检，维护，保养，工作记录等日常工作制度。
6． 7 宜制定适用于公共建筑的设备操作规程，设备使用管理制度，设备运行岗位责任制度，巡视记录制度，工具使用及管理制度。
6.8 宜建立设备的资产，使用，维保，故障，能耗，改造等全周期管理制度。
6.9 夏季室内温度设置不应低于 $26{ }^{\circ} \mathrm{C}$ ，冬季室内温度设置不应高于 $20^{\circ} \mathrm{C}$ ，空调系统运行期间不宜开门开窗。
6． 10 应对数据中心基础设施和 IT 设备的能耗状况实时监测与动态分析。
6． 11 对具备条件的能源管理项目，宜采用合同方式进行能源管理。

7 用能评估与审计

7.1 一般规定

7．1．1 建筑用能评估与审计包括管理者日常评估和能源审计两种方式。
7．1．2 能源管理者应定期对建筑用能合理性进行评估，评估间隔时间不应超过 1 年，宜根据用能系统运行的周期进行日常评估。
7． 1.3 年能源消费量达 500 t 标准煤以上或年电力消耗 $2 \times 10^{6} \mathrm{~kW} \cdot \mathrm{~h}$ 以上或建筑面积 $10000 \mathrm{~m}^{2}$ 以上的国家机关每 5 年应开展一次能源审计，审计等级宜达到二级及以上，审计等级应参考国家与地方能源审计等级要求确定。

7． 2 日常评估

7． 2.1 应根据建筑或系统能源数据报表，建筑用能系统或设备运行台账，结合用能系统基本运行参数和性能参数的测试数据，评价分析建筑与用能系统用能水平情况，用能系统功能性运转情况，用能系统能耗与能效合理性情况。
7． 2.2 宜采用建筑能源管理系统记录的数据；对于未建设建筑能源监测管理系统，可采用人工抄表记录和现场测试的数据；对于未安装相关用能系统计量表具的建筑，可采用现场测试获取数据。
7．2． 3 宜有建筑或用能系统近 3 年完整的能耗数据报表，主要包括：

- —建筑能源消耗统计报表；
- —用能系统能源消耗统计报表；
- —建筑能源消费账单；
- —建筑能源总量统计报表；
- —建筑分类能源统计报表等。

7． 2.4 宜有建筑用能系统或设备近 1 年以上完整的运行记录文件，主要包括：

- —设备运行记录文件；
- —日常巡检记录文件；
- —设备故障维修记录文件；
- —维护与保养记录文件等。

7． 2.5 宜对用能系统基本运行参数和性能参数进行测试，测试方法应符合 JGJ／T 177 的规定。
7． 2.6 宜对建筑，用能系统的用能水平进行日常评估，并将评估周期的用能水平与建筑能源绩效指标及国家或地方同类型建筑，用能系统能耗定额指标进行对标分析，判断建筑及用能系统能源利用效率的合理性。
7． 2.7 宜对用能系统功能性运转情况进行日常评估，周期性检查用能系统是否正常运行，运行参数是

否正常，判断用能系统运行状态是否满足设计和使用功能要求，是否存在能源浪费现象。
7． 2.8 宜对用能系统能耗使用合理性进行日常评估，对用能系统能耗进行同，环比分析，判断用能系统是否存在不正常用能现象。
7． 2.9 宜对用能系统能效使用合理性进行日常评估，对用能系统能效进行同，环比分析，判断用能系统是否处于高能效水平运行。
7．2． 10 用能单位应编制建筑用能情况日常评估报告，根据评估报告结论及时调整用能系统运行策略，并对数据异常的用能系统进行核查与维护。日常评估报告内容主要包括：

- —建筑与用能系统介绍；
- —建筑与用能系统能源消耗状况；
- —建筑能源资源消耗指标计算分析；
- —用能系统能源资源消耗指标计算分析；
- —用能系统功能性运行情况分析；
- —评估结论。

7．3 能源审计

7．3． 1 能源审计全过程包括能源审计方案的制定，建筑情况，能源数据，能源计量，能源管理，用能系统等相关信息的收集，现场审核与测试，建筑用能情况的分析与评价，节能改造建议的提出，审计报告的编制。
7．3．2 可通过聘请专业机构或组织本单位专业人员开展。

7．3． 3 开展前应明确审计等级，范围，边界，目标，审计周期，建筑基本信息和用能系统概况等相关内容。
7．3． 4 应符合 $G B / T 17166$ 的规定，审计内容包括但不限于：
——对能源资源管理状况进行审查，包括能源资源管理机构，方针和目标，用能设备使用，计量和管理，用能管理制度和节能改造情况等；
——对建筑总能耗和能源强度等能耗指标及达标情况，能源绩效指标达标情况，能源种类及占比情况，逐月／逐年能耗趋势变化情况，分项能耗情况，可再生能源利用情况等按照审计等级要求进行审查；
——对建筑不同功能的典型房间或区域开展正常使用情况下的室内环境品质状况检测，包括室内温度，相对湿度，送风风速，照度等参数检测，评估建筑室内环境品质状况。必要时还可增加 CO_{2} ，TVOC，PM2． 5 等检测内容；
——应掌握建筑用能系统和设备运行情况与调节控制方式，车辆交通系统运行状况，围护结构热工性能及使用状况，按照审计等级要求开展相关检测，并分析评价建筑能源利用效率水平及节能情况；
——结合能源资源消耗情况，能源资源系统存在的问题和建筑能源利用效率，对建筑进行节能潜力分析，从管理和技术等多个途径提出合理的节能改造建议或方案；
7． 3.5 审计程序，过程方法，审计要求及报告成果应符合国家或地方的相关规定。
7．3． 6 用能机构应根据能源审计结果开展相应的节能改造工作，包括能源管理提升，用能系统运行调适或节能改造等。

8 用能系统能效调适

8． 1 一般规定

8．1．1 用能系统能效调适通过对用能系统进行持续调适优化，实现用能系统高效节能运行。

DB45／T 2361—2021
8．1．2 用能系统能效调适工作包括系统调适优化，能效提升及日常运行监测与维护管理。

8． 2 系统调适优化

8． 2.1 用能系统应通过调适，优化变配电，照明，电梯，空调，通风，热水，给排水等用能系统或设备的性能。
8．2． 2 系统调适优化应符合 GB／T32019的规定，包括但不限于以下内容：

- —中央空调系统应采用调适开启台数，供水管网阀门开度调，冷却塔开启数量等方法。
- —生活热水系统热源调适应根据建筑热水需求量变化进行。
- —建筑用能系统能效调适宜持续执行，根据用能系统影响因素的变化及时调整系统运行参数。

8．2． 3 根据用能日常评估和能源审计的用能系统性能测试数据，制定建筑再调适计划，对建筑各系统进行诊断，调整和完善。

8． 3 能效提升

8． 3.1 根据用能日常评估和能源审计的评审结果，聘请专业技术人员按照评审结果进行节能改造。
8．3． 2 能效提升应符合 GB／T 32019 的规定。内容包括但不限于：
——对于暖通空调系统，宜采用集中控制，气候补偿，设备变频调节，参数优化控制，水力平衡调节，分时分区控制和室内温控技术等方式。
——对于照明系统，公共区域照明宜采用定时，感应控制措施，建筑照明宜选用 LED 等高效照明灯具。
——对于动力系统，电梯，水泵等应实行变频控制，联动控制，智能控制等控制方式，宜根据使用情况合理设置开启数量和时间，优化运行模式。

- —对于供配电系统，宜更新改造老化线路，电网，变压器，电动机等设施设备。
- —对于其他系统，宜考虑使用遮阳装置，针对围护结构在建筑设计阶段的热工性能未达到 GB 50189 等现行国家与地方标准设计要求的宜进行修缮与改造。
——数据中心机房应符合 GB 50174 中对于数据机房节能运行的相关规定，宜开展机房冷热通道改造，采用空调通风系统按需自动调节，气流组织改造等措施。
——应参照能源审计报告及相关文件，更换低能效设备或系统，故障设备或强制性淘汰的设备或系统。
——鼓励利用太阳能，风能等可再生能源。

参 考 文 献

［1］GB／T 17981—2007 空气调节系统经济运行
［2］GB／T23331—2012 能源管理体系
［3］GB／T 29455—2012 照明设施经济运行
［4］GB／T 31342—2014 公共机构能源审计导则
［5］GB／T 50801—2013 可再生能源建筑应用工程评价标准
［6］GB／T 51161—2016 民用建筑能耗标准
［7］JGJ 176—2009 公共建筑节能改造技术规范
［8］JGJ／T 260—2011 采暖通风与空气调节工程检测技术规程
［9］JGJ／T 285—2014 公共建筑能耗远程监测系统技术规程

中华人民共和国广西地方标准
国家机关公共建筑用能管理规范
DB45／T 2361－2021
广西壮族自治区市场监督管理局统一印刷
版权专有 侵权必究

